Instructor : Emanuele Viola Scribe : Eric Miles Parity requires large constant - depth circuits ( II ) Correlation bounds for parity

نویسنده

  • Eric Miles
چکیده

Then, let q(x) = ∑ m∈M (am ·m(x)) be the weighted sum of these monomials, for a set of weights {am}m∈M . We want to choose the weights in order to give q the properties already stated, which is equivalent to finding a non-trivial solution to a certain system of equations. Denote S = {s1, . . . , s|S|} and M = {m1, . . . ,m|M |}. Then, the system of equations we would like to solve is  m1(s1) m2(s1) · · · m|M |(s1) m1(s2) m2(s2) · · · m|M |(s2) .. . . . m1(s|S|) m2(s|S|) · · · m|M |(s|S|)   a1 a2 .. a|M |  =  0 0 .. 0 

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Instructor : Emanuele Viola Scribe : Eric Miles Cryptography in constant depth : II & III 1 Locally computable randomized encodings

Our first attempt at transforming this group program into a randomized encoding of f is to define f ′(x) := (g xk1 1 , . . . , g xkl l ). We can check if the necessary properties are satisfied: • It’s locally computable, because each element in the output depends on one bit of x. • f(x) 6= f(x′)⇒ f ′(x) 6= f ′(x′) • Unfortunately, we cannot hope to find a distributionD of circuits C such that C...

متن کامل

2 Monotone Functions and Monotone Circuits

In the last lecture we looked at lower bounds for constant-depth circuits, proving that PARITY cannot be computed by constant-depth circuits, i.e. PARITY / ∈ AC0. General circuit lower bounds for explicit functions are quite weak: the best we can prove after years of effort is that there is a function, which requires circuits of size 5n − o(n). In this lecture we will examine what happens if we...

متن کامل

Succinct and explicit circuits for sorting and connectivity

We study which functions can be computed by efficient circuits whose gate connections are very easy to compute. We give quasilinear-size circuits for sorting whose connections can be computed by decision trees with depth logarithmic in the length of the gate description. We also show that NL has NC2 circuits whose connections can be computed with constant locality. ∗Supported by NSF grants CCF-...

متن کامل

On the Power of Small-Depth Computation

In this work we discuss selected topics on small-depth computation, presenting a few unpublished proofs along the way. The four chapters contain: 1. A unified treatment of the challenge of exhibiting explicit functions that have small correlation with low-degree polynomials over {0, 1}. 2. An unpublished proof that small bounded-depth circuits (AC) have exponentially small correlation with the ...

متن کامل

A New Lower Bound Technique for Quantum Circuits without Ancillae

We present a technique to derive depth lower bounds for quantum circuits. The technique is based on the observation that in circuits without ancillæ, only a few input states can set all the control qubits of a To↵oli gate to 1. This can be used to selectively remove large To↵oli gates from a quantum circuit while keeping the cumulative error low. We use the technique to give another proof that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009